Feeds:
Posts
Comments

Archive for the ‘Landscapes’ Category

Office in the woods

Note to WordPress.com followers: Per Square Mile has moved to a private host. Your old WordPress.com follows and email subscriptions won’t work as WordPress will not share that information. Head over to the new Per Square Mile for the latest.

There’s a scene in the movie Office Space where Peter, the protagonist, unscrews part of his cubicle and ceremoniously pushes the wall over, sending it and its shelved contents crashing to the floor. With a satisfied smile, he pats his desk a few times, kicks back, and enjoys his new view.

As I write this, the view out my window isn’t much more than Peter’s. Just a handful trees—no mountains, no idyllic nature scene, nothing that would make Ansel Adams jealous. Just one scrubby street tree and a couple of canopies poking their heads above the adjacent apartment building.

But according to Rachel Kaplan, an environmental psychologist, those few trees are far better than nothing at all. Kaplan has documented numerous cases in which workers reported feeling happier and more satisfied with their jobs because of the view they had out their window. Even views of parking lots—so long as they had trees or some other landscaping—were enough to brighten some people’s days.

Kaplan has made a career out of studying how views of nature affect various parts of people’s lives, from patient recovery times to worker productivity. Currently, I’m interested in her research on the latter topic. Staring out at a busy street is better than no view at all, but sometimes I feel antsy and distracted for no apparent reason. I’ve wondered if a more bucolic view would focus my efforts and lift my spirits. Coincidentally, Kaplan’s research suggests that’s exactly what would happen.

Kaplan says windows give people the opportunity for short restorative breaks. After hours spent staring at a computer screen or hammering through some repetitive task, a brief diversion or daydream is sometimes all that’s needed to push through the rest of the day. Allowing ourselves a short mental break boosts our happiness, which also increases our productivity.

But restorative breaks are more effective, according to Kaplan’s research, if they include gazing upon a natural scene. There’s something irreplaceable about nature. Not just greenery—office plants had a small positive effect, but one that paled in comparison to a natural view. Just adding a few natural elements to a windowful of buildings or parking lots raised employee satisfaction by a significant amount. Workers with nature views reported feeling less frustrated, more patient, and more satisfied with their jobs. Perhaps improbably, they also felt their jobs were more challenging and expressed greater enthusiasm for their work, despite the fact everyone surveyed had relatively similar jobs. Furthermore, workers with nature views also reported fewer ailments than those without.

People with outdoor jobs in natural settings—park rangers and park maintenance staff—had it best of all. They said their jobs were less demanding, lower pressure, less frustrating, and so on. It’s possible that such jobs are actually less demanding and lower pressure, but given how nature affects office workers, I wouldn’t be surprised if being immersed in nature plays an important role.

Alas, as a writer I don’t have many excuses to work outside. But I shouldn’t complain too much. My three trees are certainly better than Peter’s view before his renovations and far better than many people who work in windowless caverns.

Photo by Jeremy Levine Design.

Source:

Kaplan, R. (1993). The role of nature in the context of the workplace Landscape and Urban Planning, 26 (1-4), 193-201 DOI: 10.1016/0169-2046(93)90016-7

Related posts:

It’s not the yard that matters, it’s the view

Managing landscapes for aesthetics

Thinking about how we think about landscapes

Read Full Post »

Taiwanese countryside

The day after Thanksgiving I was on the tail end of a journey that spanned three flights and four airports. I was zipping through the Taiwanese countryside, though I didn’t realize where I was at the time. You could be forgiven if you thought my confusion was caused by the 28 hours of travel I had endured the day before, or maybe the intense jetlag, but you’d be wrong. I was fully alert.

This being my first time in Taiwan—my first time in Asia, in fact—I felt like a kindergartener on his first day of school. Everything felt foreign, new, and exciting. Mopeds raced ahead of automobiles at every stoplight and surged through crowds of people wandering the famous markets. Their rattling exhaust mingled with the vaguely eggy smell of effluent seeping from sewer grates. Politicians beamed down from billboards, thumbs erect in positive estimations of the country’s prospects. Lights pulsed along every roadside, manmade rainbows framing incomprehensible Chinese characters and occasionally humorous English phrases.

Amidst all the clamor, my density-obsessed mind couldn’t help but notice something else. This place was crowded. It was so packed with three-story houses, mopeds, Mazda 3s and Mitsubishi Delicas that it felt like one continuous city. In fact, I didn’t know we had left the city until my wife told me so. That was the source of my confusion.

When she mentioned that, I was taken aback. This was the Taiwanese countryside? To me it looked more like a confused mishmash of industry, farmland, and suburbia. But then realization settled in. I was in Taiwan, the second most densely populated country in the world.¹ With 23 million people living mostly on the slim plains sandwiched between the west coast and the rugged mountains that dominate two-thirds of the island, it makes similarly-sized Holland seem depopulated.

Satellite view of Taiwan

That Taiwan is a mountainous island no doubt partially accounts for its teeming population. But so too does the humid, tropical climate of the lower elevations. Tropical ecosystems are the most productive in the world, in part due to their year-round growing season and generous precipitation. It’s why the majority of Taiwan’s population lives on the flat, western sliver, and why farmers there don’t need large land holdings. It’s also why the Taiwanese countryside is as populous as some American suburbs.

As we whizzed by parked cars, rice paddies, and murky fish farms, I had an epiphany. I was in the country. Sweeping aside my preconceptions, I realized that “countryside” is inherently interpretable term, one that depends more on how the land is used than it does on population density.

¹ If you don’t count city-states or tiny oceanic flecks like the Maldives.

Photo by Tim De Chant, satellite image from NASA.

Related posts:

Managing landscapes for aesthetics

Spare or share? Farm practices and the future of biodiversity

Read Full Post »

Roman mosaic

If you want a glimpse of our ecological future, take a look at present-day Europe. Continuous and intensive human habitation for millennia have crafted ecosystems that not only thrive on human disturbance, they’re dependent on it. But even in places where pastoral uses have fallen by the wayside, the ghosts of past practices linger. If you have any doubt that the changes we’re making to the earth right now will be felt thousands of years from now, these two studies should wipe those away.

This post was chosen as an Editor's Selection for ResearchBlogging.orgThe first takes place in a post-apocalyptic landscape masquerading as a charming woods, the Tronçais forest. Smack in the middle of France, Tronçais is the site of a recent discovery of 106 Roman settlements. Photographs of the settlements call to mind Mayan ruins in Yucatan jungles, with trees overtaking helpless stone walls. Tronçais was not unique in this way—following the fall of the Roman Empire, many settlements reverted to forest after the 3rd and 4th centuries CE.

Ecologists studying plant diversity in the area noticed two distinct trends. First, the soil became markedly different as they sampled further from the center of the settlements. Nearly every measure of soil nutrients declined—nitrogen, phosphorous, and charcoal were all lower at further distances. Soil acidity declined, too. Second, plant diversity dropped off as sample sites moved further into the Roman hinterland, and likely a result of changes in the soil.

The researchers suspect the direct impacts of the settlement and Roman farming practices are behind the trends. High phosphorous and nitrogen levels were probably due to manuring. The abundance of charcoal is clearly from cooking fires, while soil pH was affected by two uses of lime common in the Roman empire—mortar used in building and marling, the spreading of lime and clay as a fertilizer. The combined effects of these practices fostered plant diversity after the settlements fell into ruin, the effects of which can be seen to this day.

The second study was undertaken by another group of ecologists who canvased grasslands in northern and western Estonia. While threatened today by the usual suspects—intensive agriculture and urbanization—the calcareous grasslands of Estonia have a long history of human stewardship which helped a wide variety of grasses and herbs to flourish. They were greatly expanded by the Vikings, who settled the area between 800 and 1100 CE. Knowing this history, the researchers suspected population density may have boosted floral diversity. They sampled exhaustively, recording plant species and communities in 15 quadrats at 45 sites for a total of 675 sample plots. They also drew 20 soil samples at each site. To estimate population density during the Viking Period, they used an established model that estimated settlement size and extent based on known ruins.

Soil qualities naturally had an affect on present-day plant diversity, but human population density during and shortly after the Viking Period also emerged as a significant predictor. As with the Roman study, changes to soil nutrients because of human activities are likely behind the results. But that’s not all. The researchers point out that seed dispersal 1,000 years ago also influenced present-day diversity. When the Vikings expanded the grasslands, they connected different patches that had previously been isolated, allowing previously isolated species to germinate in new areas.

These are not the first studies to reveal a shadow of human habitation in present day ecosystems—the Amazonian rainforest is littered with evidence of agriculture before European contact, for example. But these studies show the ghosts of ecology persisting for millennia, not centuries. Not only does it bolster the notion that no landscape is pristine—an idea that has been gaining traction with the ecological community—it should underscore the persistence of any human activity.

Sources:

Dambrine, E., Dupouey, J., Laüt, L., Humbert, L., Thinon, M., Beaufils, T., & Richard, H. (2007). Present forest biodiversity patterns in France related to former Roman agriculture Ecology, 88 (6), 1430-1439 DOI: 10.1890/05-1314

PÄRTEL, M., HELM, A., REITALU, T., LIIRA, J., & ZOBEL, M. (2007). Grassland diversity related to the Late Iron Age human population density Journal of Ecology, 95 (3), 574-582 DOI: 10.1111/j.1365-2745.2007.01230.x

Photo by mharrsch.

Related posts:

Ghosts of geography

Urban forests just aren’t the same

The woods that were

Read Full Post »

Ghosts of geography

As I was walking home from work in San Francisco a number of years ago, a Days Inn caught my eye. The hotel itself is nothing special, but it sat at an odd angle to the street. Why would anyone build that way, I wondered. Next to it was a wide-open parking lot, something of a rarity in the city. Clearly, something had prevented the hotel owners from building on a rectangular footprint. But what could it have been?

At home, I pored over aerial photographs of the building and the parking lot. Upon zooming out, the answer was apparent. A trail of parking lots and angled buildings snaked through the neighborhood back to the freeway. Oddly shaped buildings remained, accommodating an interloper that is now gone. The disruptive structure was a double-decker spur of the Central Freeway built in the 1960s amidst the San Francisco freeway revolts. Like other double-decker freeways in the Bay Area, it was badly damaged during the 1989 Loma Prieta earthquake and had to be removed.

Click to view interactive before-and-after photographs of Octavia Blvd.

click to view interactive version

Parts of the old right-of-way have been reclaimed. The old ramps leading to and from Fell St. and Oak St. are now the Hayes Valley Farm. Octavia Boulevard has been transformed into a bike and pedestrian friendly thoroughfare. And buildings now stand in other places.

Such ghosts of geography are everywhere. Old land uses and geologic processes can leave marks on the landscape that are sometimes blurred but not always expunged. Chicago is full of geographic ghosts that resulted from the removal of old train tracks. Trees trace the path of an old section of the Green Line.

Click to view interactive before-and-after photographs of Chicago's Green Line

click to view interactive version

And buildings balloon to fill old right-of-ways formerly used by freight trains.

Building filling an old freight line right-of-way in Chicago

Even geology expresses itself in today’s land uses. Farmers planting on drumlins unwittingly map the direction of the Wisconsinan glaciers.

Aerial view of area around Beaver Dam, Wisconsin

Terrain view of area around Beaver Dam, Wisconsin

The Appalachian Mountains dictate where people farm and live.

Satellite view of Appalachian Mountains in Pennsylvania

Terrain view of Appalachian Mountains in Pennsylvania

Ghosts of geography may be obvious, like New York City’s High Line…

Click to view interactive before-and-after photographs of New York City's High Line

click to view interactive version

…or more subtle like the trees in Sue Bierman Park that used to line the on and off ramps that fed the now-dismantled Embarcadero Freeway in San Francisco.

Click to view interactive before-and-after photographs of Sue Bierman Park

click to view interactive version

The past is reflected everywhere in geography. What ghosts are in your neighborhood?

Related posts:

The woods that were

Density in the pre-Columbian United States: A look at Cahokia

Read Full Post »

Farms giving way to subdivisions in Southeastern Wisconsin

If you were a squirrel living in Southeastern Wisconsin, you’d be pleasantly surprised by the state of things. In many places, there are as many—if not more—trees than there were 200 years ago. But that rosy image doesn’t tell the entire story. Comparing the forests that cover the cities and suburbs around Milwaukee—and likely in many places around the world—is like comparing Rome before and after the fall. It’s still Rome, but it’s not quite the same as it used to be.

Southern Wisconsin is a case study of the changes that were affecting much of the country in the 20th century. Most of the forests had been cleared in the 1800s by farmers, resulting in a landscape that little resembled what came before. The woodlots that remained were small and scattered. In one famous study, only 4.8 percent of the original forests remained by 1935. Milwaukee and its surrounding cities grew steadily in the run-up to World War II, but positively boomed thereafter. They needed room to grow, and since cleared land is easy to build on, farm after farm was subdivided.

The path from forest to front yard seems clear cut. A woods is cleared to make way for farmland, which is later subdivided into lots and sold off to make way for homes. But the reality is much more complex than that. Though a neighborhood may maintain its wooded appearance, it’s original character is gone.

In Wisconsin, subdivisions are invariably preceded by farms. Farming is a tough life. There’s not much money to be made with a small family farm, and an farmer’s property often doubles as his retirement fund. To maximize the investment, he’ll usually subdivide it for housing. It usually works out well for him, because land that’s good for growing crops is also good for building houses—it’s not too steep and most of it doesn’t need to be cleared.

That’s not to say farms are entirely devoid of trees. Most contain small woodlots and extensive fencerows that separated fields of corn, wheat, and soybeans. They’re relics of bygone forests, and in many places that’s all that’s left. Though the relationship is a bit one-sided, relic trees and farms have existed side-by-side for decades.

Maintaining that landscape during subdivision isn’t difficult. Building houses around trees is easy if you don’t take a cookie cutter approach, and houses with big trees in their yards tend to sell for more. But conservation rarely happens. That’s the conclusion of one study of Southeastern Wisconsin. It looked at the fate of extant vegetation as farms gave way to subdivisions between 1937 and 1975. Though the sum total of forested land didn’t drop as much as anticipated, very little of the original vegetation that made it through the transition. By 1975, the trees that dotted subdivisions and roadsides were almost entirely new.

That study reminds us that sum totals seldom tell an entire story. The relationship between forests, farms, and yards is complex and multidirectional. Forests are often cleared for farms, but abandoned farms can return to their forested state over time—much of New England underwent this process. However, urbanization can intervene along the way, removing the little remaining vegetation and replacing it with landscaped yards. But that’s not all the forest loss development is responsible for. Though many subdivisions are carved from land cleared previously for farms, they can be indirectly responsible for the loss of even more forests. Street and yard trees can’t offset this entirely. Similar patterns are well documented in developing nations. In Brazil, for example, expanding soy production has pushed cattle ranchers to clear land further into the frontier. It’s easy to forget these same processes are at work here in the United States.

Even when subdivisions spring fully formed from forested land—skipping the intermediate farm stage—their lots are often cleared of existing vegetation. Some of my research in graduate school documented the stark changes forest edges undergo when houses move in. In old black-and-white aerial photographs, the bare earth of cleared building sites stood out in stark contrast to the dark gray of the surrounding woodlands. Straight, sharp lines separated the two. In time, the edge bled back into the yards, but it wasn’t quite the same.

Suburban development isn’t going away anytime soon, but some of the structure and function of the old woodlands they replaced can be recovered. Homeowners can plant native trees. People can lobby their cities to plant native trees as well, rather than the whatever low-maintenance tree is in fashion among city foresters this year. The result won’t be the same as an intact woodland, but at least it will be similar.

Source:

Sharpe, D., Stearns, F., Leitner, L., & Dorney, J. (1986). Fate of natural vegetation during urban development of rural landscapes in Southeastern Wisconsin Urban Ecology, 9 (3-4), 267-287 DOI: 10.1016/0304-4009(86)90004-5

Photo by sierraromeo.

Related posts:

An ecology of gardens and yards

The map that started it all

Front yards, minus the grass

Read Full Post »

Never buy a car with a salvage title. Anyone who has ever driven a car after a major accident can tell you why—it’s just not the same as before the crash. Though all the parts might be in the right place and the paint just as shiny as before, there’s invariably some new rattle, shake, or whistle that you can’t fix. The magic that is gone, and nothing will bring it back. Cars are a lot like primary tropical forests in that way.

Biodiversity thrives in undisturbed tropical forests. But once they have been selectively logged, burned, or leveled, what grows back in their place just isn’t as rich, vibrant, or diverse as the original, according to a new paper released online today in Nature. The meta-analysis—written by a number of authors including Bill Laurence and Tom Lovejoy, two deans of tropical conservation—synthesized 2,220 pairwise comparisons of primary and disturbed tropical forests from 138 different studies on four different continents to arrive at that one conclusion.

The dominant image of deforestation—at least from an American perspective—is the Amazon. Photographs and satellite images of logging and agricultural conversion show in graphic detail splintered tree stumps, smoking ashes, and herringbone tentacles of human influence. But while the authors found South American forests are greatly threatened by human disturbance, Asian forests are even more imperiled.

To compare results from numerous studies, the study’s authors the measured effect size of human disturbance on biodiversity. It’s a statistical technique which describes the magnitude of differences between populations. The effect size of land-use changes in Asia was more than twice that of second place South America and even larger still than those of Africa and Central America.

To give you an idea of the severity of Asia’s biodiversity threats, let’s review the guidelines on interpreting effect sizes. Generally, a small effect size is 0.2, medium is 0.5, and large is 0.8 and above. In the study, Central America checks in at 0.11, Africa at 0.34, and South America at 0.44. (A quick caveat before we continue: The African result may not be representative. The continent’s tropical forests are understudied because of continued conflict, and future disturbance rates could accelerate in the face of population growth.) Asia is far ahead of the rest of the pack, blowing them all away with an effect size of 0.95.

Asian tropical forests are more threatened by every type of human impact than tropical forests on other continents. Agricultural conversion is responsible for a large portion of biodiversity loss in the region, with plantations and selective logging operations following not far behind. Plantations are of particular concern because the crops they yield—primarily palm oil and exotic woods—are lucrative. Their profit potential draws interest not only from multinational corporations, but governments as well. These organizations have large amounts of capital and can convert vast tracts of primary forest into ecologically sterile plantations that practically print money.

Plantations also have the advantage—for governments and corporations, at least—of looking deceptively like natural forests to many people. Asia Pulp & Paper, a company with large plantation holdings throughout Southeast Asia, has been exploiting this confusion through a series of recent TV ads. The Indonesian government has been in on the ruse, too, suggesting that it may push for their plantations—many of which were carved from primary forests—to count as forest land under REDD schemes, or reduction of emissions through deforestation and forest degradation. That means the government would not only profit from the plantations’ crops, but also from international payments to purportedly offset or reduce carbon emissions.

If we have to use forest land at all, the best bet to preserve biodiversity seems to be selective logging. Though the practice still harms overall biodiversity, it does so less than other land uses. Still, the paper’s authors caution that selective logging’s ill effects may be masked by proximity to less disturbed primary forests, which may export species to depauperate tracts. If this is the case, then selectively logged areas may be running the ecological equivalent of a trade deficit with primary forests. Without some reciprocation, the two will eventually go bankrupt.

This new meta-analysis confirms what many ecologists have long suspected—that minimally disturbed primary forests are some of the best bastions of biodiversity. It puts another hole in the idea that agroforestry projects, plantations, and even selective logging can extract resources without adversely affecting ecosystems. Like a car that’s been in an accident, primary can never be the same as before. But unlike cars, we can’t go out and buy new ones.

Source:

Gibson, L., Lee, T., Koh, L., Brook, B., Gardner, T., Barlow, J., Peres, C., Bradshaw, C., Laurance, W., Lovejoy, T., & Sodhi, N. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity Nature DOI: 10.1038/nature10425

Photo by WWF Deutschland.

Related posts:

Spare or share? Farm practices and the future of biodiversity

Coaxing more food from less land

Can we feed the world and save its forests?

Read Full Post »

Looking out from Melrose Rock

When I was packing for the move from Chicago to Cambridge, I figured the transition would be easy for two reasons, both of which are related. First, the two cities share a temperate climate. I grew up in Wisconsin and love—absolutely love—the changing seasons. For example, I’m not merely unfazed by below zero weather, I revel in it. The second reason is partially a consequence of the first—the Midwest and New England share a similar flora. Deciduous forests were the playground of my youth, where I went to escape the heat of the summer or romp through the snowy winter.

Having been a Cantabrigian for just just over two months, I can’t speak to the winters yet. But I can say something about the plants. A jaunt to Middlesex Fells over the Labor Day weekend affirmed my fondness for temperate deciduous forests. Still, I wasn’t quite at home. The Fells has a marvelous mix of deciduous oaks and evergreen pines perched on rolling hills and rocky outcrops. The whole landscape is reminiscent of the Calvin and Hobbes cartoons I devoured as a kid, but there was something missing. That something is my history with the place, or lack thereof. Research confirms it.

I wasn’t a part of the study in question—it took place almost a decade ago—but its findings confirm why I am both predisposed to liking New England’s woods and why they aren’t quite home yet. The study’s authors surveyed 328 park users in Ann Arbor, Michigan, to see whether they were attached to a particular park or just a particular setting. The study’s authors classified participants as park neighbors, visitors, volunteers, or staff, reasoning that these backgrounds would tint the lenses through which people viewed the parks.

The researchers found that neighbors who frequented a particular park were smitten by that place in particular. Perhaps the bond was formed during solitary reflective walks, or maybe weekend picnics with the family. Regardless, they liked those place in particular and didn’t find substitutes as appealing. Park volunteers and staff, however, were more inclined to treasure a park’s ecological contributions rather than sentimental ones. When shown photographs of a particular ecosystem, say a prairie, volunteers and staff were more likely to rate those shots highly regardless of their location. Volunteers and staff, who the researchers reasoned to be more ecologically knowledgeable, were also more open to restoration projects that supplanted invasive species with natives. Park neighbors and visitors tended to be happy with the landscape the way it was and generally opposed changes.

The differing perspectives of sentimental park users and ecologically principled individuals may help explain my hesitant fondness for the Massachusetts wilderness. The study seems to confirm that I straddle the line between two types of people. I have a feeling that many people are like me, especially those who recently moved. Our sentimental side aches for a favorite tree or preferred vista, but the rational ecologist in us appreciates native plant assemblages and landscapes.

People develop not just an affinity for nature, but the nature outside their window. That suggests not only that we should get outside, but also bring the outdoors closer to home, whether that be in the form of a city park or wild backyard. First-hand experiences with nature can be powerful ways to inspire people to adopt their own environmental ethic. I’m not the first to posit this theory—David Gessner does just that in his book My Green Manifesto, which I’m currently reading, as have others before him. Indeed, I can trace part of my own environmental ethic to a childhood spent in the park down the street or at the seven acres of scrubby, overgrazed woods just outside of town that my dad was rehabilitating. They are the type of landscapes I love and am fighting to preserve. Indeed, part of the reason I’m fascinated with higher density living is the potential it has to keep the wild places wild, the semi-wild places semi-wild. Calvin and Hobbes’s zany woodland adventures captured my childhood imagination because I saw in them a bit of my own al fresco self. I want future generations to have that chance, too.

Source:

Ryan, R. (2005). Exploring the Effects of Environmental Experience on Attachment to Urban Natural Areas Environment and Behavior, 37 (1), 3-42 DOI: 10.1177/0013916504264147

Photo by Paul-W.

Related posts:

Thinking about how we think about landscapes

Wilderness housing boom challenges conservation

16,422 people per square mile

Read Full Post »

Older Posts »

%d bloggers like this: