Feeds:
Posts
Comments

Archive for the ‘Forests’ Category

Bubbler in a city park

Note to WordPress.com followers: Per Square Mile has moved to a private host. Your old WordPress.com follows and email subscriptions won’t work as WordPress will not share that information. Head over to the new Per Square Mile for the latest.

The United States is not run by godless Communists. Neither is most of the rest of the world. In fact, the godless Communists that do remain are not all that Communist anymore. I bring that up because command and control economies can dictate what development happens where. Land conservation under such a system is technically easier, even if the actual results in Communist nations like the Soviet Union weren’t that inspiring. Land conservation in the free world is a trickier game, one played with carrots and sticks as opposed to edicts and directives. Here, money is your best friend.

Conservation organizations have focused on preserving big tracts of land, and rightfully so. Big buys are often more cost effective and easier to manage. But they’re also becoming trickier to execute in a world dominated by curving cul-du-sacs and one acre lots. If we want functioning ecosystems in these places, we need to focus on land conservation within the subdivision, not along its borders.

Luckily, the carrot seems to be working in those places. A study of subdivisions in Maryland between Washington, D.C., and Baltimore shows that developers have been incorporating more open space into their subdivisions. That’s not because they’re interested in land conservation. Part of it is a bit of command and control—Maryland’s Forest Conservation Act forces developers to conserve a modicum of forested land—but it’s also simple economics. Developers can sell lots and houses at higher prices if open space is nearby. Because proximity matters, that open space typically needs to be within the subdivision.

To developers, though, that open space is fungible. It can exist either as public parks or larger private lots—both raise prices. The Maryland study also found that minimum lot sizes—which governments typically use to preserve open space—can push developers away from shared open space toward larger lot sizes.

This poses a problem for maintaining healthy ecosystems. Like many laws, the way the Maryland Forest Conservation Act is interpreted matters. People can uphold the letter of the law—maintaining forest cover—without changing their usual habits—mowing their entire lot. The result is something that looks like a forest from above but doesn’t function like one.

In a perfect world, everyone would happily tend a few thousand square feet around their house and leave the rest to nature. But that’s not always the case. People will spend all Saturday mowing acres of grass and grumble about it afterwards. That’s because for many people owning a country manor is more alluring than owning a chunk of the great outdoors. You can fight that mentality by increasing minimum lot sizes to the point where mowing it all becomes completely unreasonable,¹but the closer you get to a metro area, the less tenable that becomes.

There’s also no guarantee that laws dictating minimum lot sizes will remain in place. As the city creeps closer, pressure to further subdivide will mount. Open space preserved in private lots could easily disappear.

Parks, on the other hand, tend to stick around. Unlike large lots, they’re seldom subdivided. Instead, they tend to become institutions. People like their parks and are loathe to lose them—no one wants to see their neighborhood park disappear. So let’s put that to use. Instead of—or in addition to—minimum forest cover and minimum lot sizes, let’s institute minimum park sizes. Everyone will benefit. Developers will be able to sell lots at higher prices. Kids will have playgrounds. Adults will have walking paths. And because big parks often have big natural areas, ecosystems will have a better chance at surviving. It’s a solution that’s a bit more command and control than current vague regulations, but everyone will benefit. It’s also more carrot than stick. Even if you don’t particularly like carrots, it’s better than getting hit with a stick.

¹ Though there will always be exceptions—near where I grew up, one guy mowed 18 acres. He had to buy a bonafide farm tractor so it wouldn’t take him all week.

Photo by JD Hancock.

Source:

Lichtenberg, E., Tra, C., & Hardie, I. (2007). Land use regulation and the provision of open space in suburban residential subdivisions Journal of Environmental Economics and Management, 54 (2), 199-213 DOI: 10.1016/j.jeem.2007.02.001

Related posts:

Flyways and greenways

An ecology of gardens and yards

Wilderness housing boom challenges conservation

Read Full Post »

Red-eyed Vireo

Note to WordPress.com followers: Per Square Mile has moved to a private host. Your old WordPress.com follows and email subscriptions won’t work as WordPress will not share that information. Head over to the new Per Square Mile for the latest.

Earlier this week I pointed out that urban areas can actually increase tree cover over time, albeit with a caveat. The two studies I cited measured tree cover and only tree cover—they made no claims about ecological function. Luckily, other studies have done just that, including one that looked at migratory bird use of greenways in urban areas.

Migratory routes are important, though most research into migratory bird decline has focused on habitat loss in their breeding and wintering grounds. That has left a large piece of the puzzle unsolved—the habitat between point A and point B. Think of it this way: If snowbirds—you know, northern (human) retirees who flock to warmer climes in the winter—started disappearing and our best solution was to look for them at their apartment in New York or their rental in Boca Raton—ignoring rest stops and motels along I-95—we’d be doing a great disservice to our older generations. Ignoring flyways is similarly foolish.

There have been studies in more recent years that aim to fill this gap, and one published in 2009 by Salina Kohut, George Hess, and Christopher Moorman picks up the trail along, well, trails. They surveyed bird species abundance and richness—how many and how varied the itinerants were—in 47 greenways in and around Raleigh, North Carolina.

Greenways are a common and convenient way for cities to conserve natural habitat. Their linear form is well suited to urban areas, and they easily double as parks or recreational trails. They also can serve as stop-over habitat for migratory birds. Kohut, Hess, and Moorman were hoping to find the right type of corridor for migrating birds, where our feathered friends can take a load off and fatten up.

It turns out that most birds were not picky and would stop at just about any greenway, regardless of vegetation, adjacent land use, or corridor width. That’s not to say all greenways were entirely equal. Overall, birds favored corridors with taller trees and lots of native shrubs teeming with fruit. And among birds that live in forest interiors far away from human development and even open fields, greenways wider than 150 meters (about 500 feet) surrounded by low-intensity development were the most popular.

None of the greenways Kohut and her colleagues studied were as good as a regular forest, though. Still, with some tweaks—including widening corridors, siting them near low-intensity development, and planting with natives—greenways can make decent stand-ins for the real thing, at least as far as migratory birds are concerned. Residential neighborhoods can even make themselves into agreeable stopover habitat by mimicking vegetation found at popular stops along the flyway.

So greenways make for good bird habitat, but let’s not forget that they’re good neighbors, too. In addition to helping migrating fauna, they boost property values, add recreational opportunities, and work well as commuting corridors for cyclists. Five benefits from one land use. Not too shabby.

Photo by qmnonic.

Source:

Kohut, S., Hess, G., & Moorman, C. (2009). Avian use of suburban greenways as stopover habitat Urban Ecosystems, 12 (4), 487-502 DOI: 10.1007/s11252-009-0099-6

Related posts:

Tree City

An ecology of gardens and yards

Plants rockin’ the suburbs, animals not so much

Read Full Post »

Tree City

City tree silhouette

Note to WordPress.com followers: Per Square Mile has moved to a private host. Your old WordPress.com follows and email subscriptions won’t work as WordPress will not share that information. Head over to the new Per Square Mile for the latest.

Cities aren’t called “concrete jungles” for their leafy greenness. But perhaps it’s an inappropriate nickname. Several cities actually have more—not less—tree cover than what came before them. By way of example, take this from historian William Cronon: “There are more trees in southern Wisconsin now than at any point in the last 7,000 years.” That’s in part due to more than a century of fire suppression, but also the intense pace of urban development.

There’s ample scientific evidence to back up Cronon’s assertion. In the early 1990s, David Nowak, an urban forester with the U.S. Forest Service, found that tree cover in Oakland, California, between 1850 and 1989 rose sharply from 2 percent to 19 percent. Now, a new study by Adam Berland, a PhD student at the University of Minnesota, found a similar pattern in and around Minneapolis, Minnesota.

Oakland and Minneapolis—and many other metro areas, I suspect—were sparsely forested before urban development. As far back as 1500 BCE, what would become Oakland was regularly burned by the Coastanoan Indians to clear out the underbrush to simplify acorn gathering. What trees remained in the 1700s were logged for lumber and firewood by the missions. Then in 1848, what was left nearly vanished when gold was discovered in California. By the time Oakland incorporated in 1852, its namesake was nearly gone.

Fire likewise held forests in southern Minnesota at bay for thousands of years. Yet unlike in central California, a part of central Minnesota quickly afforested during a brief climate cooling 400 years ago. It wasn’t long lived, though—shortly after their arrival, European settlers swiftly knocked down most of the Big Woods for farming. The remaining flecks large enough to be called forests cover only 2 percent of the original area. In other words, forests near Oakland and Minneapolis had nowhere to go but up.

The arrival of dense settlement was something of a godsend for trees. Young neighborhoods and cities are often depauperate—it’s easier to build without big trees in your way—but they tend to accumulate tree cover as they age. And relative to the denuded landscape that came before Oakland and Minneapolis, those urban forests are more akin to a real jungle than a concrete one.

Urban forests are certainly an improvement from a tree’s perspective, but they’re not a panacea for habitat loss. Neither of these studies examined how those forests function ecologically. Just like 11 random people do not make a soccer team, a bunch of trees is not the ecological equivalent of a real forest. Not only is the understory substantially different in cities—houses are terrible forage for most insects and animals—but the types of trees are often radically different.

Still, these two studies should make abundantly clear that cities do function as ecosystems, albeit limited ones. And in some cases, they are more diverse and productive than what came before. This is especially true for metropolitan Minneapolis, where monocultures of wheat and corn were less diverse than the Big Woods they replaced and maybe less ecologically complex than the cities that replaced them. These two cases also underline the need for an urban ecology that doesn’t just study what systems cities create, but strives to shape those systems for greater ecological complexity and diversity.

Sources:

Berland, A. (2012). Long-term urbanization effects on tree canopy cover along an urban–rural gradient Urban Ecosystems DOI: 10.1007/s11252-012-0224-9

Nowak, David J. (1993). Historical vegetation change in Oakland and its implications for urban forest management Journal of Arboriculture, 19 (5), 313-319

Photo by frozenchipmunk.

Related posts:

An ecology of gardens and yards

Urban forests just aren’t the same

Creativity—the disturbance that distinguishes urban ecosystems

Read Full Post »

Roman mosaic

If you want a glimpse of our ecological future, take a look at present-day Europe. Continuous and intensive human habitation for millennia have crafted ecosystems that not only thrive on human disturbance, they’re dependent on it. But even in places where pastoral uses have fallen by the wayside, the ghosts of past practices linger. If you have any doubt that the changes we’re making to the earth right now will be felt thousands of years from now, these two studies should wipe those away.

This post was chosen as an Editor's Selection for ResearchBlogging.orgThe first takes place in a post-apocalyptic landscape masquerading as a charming woods, the Tronçais forest. Smack in the middle of France, Tronçais is the site of a recent discovery of 106 Roman settlements. Photographs of the settlements call to mind Mayan ruins in Yucatan jungles, with trees overtaking helpless stone walls. Tronçais was not unique in this way—following the fall of the Roman Empire, many settlements reverted to forest after the 3rd and 4th centuries CE.

Ecologists studying plant diversity in the area noticed two distinct trends. First, the soil became markedly different as they sampled further from the center of the settlements. Nearly every measure of soil nutrients declined—nitrogen, phosphorous, and charcoal were all lower at further distances. Soil acidity declined, too. Second, plant diversity dropped off as sample sites moved further into the Roman hinterland, and likely a result of changes in the soil.

The researchers suspect the direct impacts of the settlement and Roman farming practices are behind the trends. High phosphorous and nitrogen levels were probably due to manuring. The abundance of charcoal is clearly from cooking fires, while soil pH was affected by two uses of lime common in the Roman empire—mortar used in building and marling, the spreading of lime and clay as a fertilizer. The combined effects of these practices fostered plant diversity after the settlements fell into ruin, the effects of which can be seen to this day.

The second study was undertaken by another group of ecologists who canvased grasslands in northern and western Estonia. While threatened today by the usual suspects—intensive agriculture and urbanization—the calcareous grasslands of Estonia have a long history of human stewardship which helped a wide variety of grasses and herbs to flourish. They were greatly expanded by the Vikings, who settled the area between 800 and 1100 CE. Knowing this history, the researchers suspected population density may have boosted floral diversity. They sampled exhaustively, recording plant species and communities in 15 quadrats at 45 sites for a total of 675 sample plots. They also drew 20 soil samples at each site. To estimate population density during the Viking Period, they used an established model that estimated settlement size and extent based on known ruins.

Soil qualities naturally had an affect on present-day plant diversity, but human population density during and shortly after the Viking Period also emerged as a significant predictor. As with the Roman study, changes to soil nutrients because of human activities are likely behind the results. But that’s not all. The researchers point out that seed dispersal 1,000 years ago also influenced present-day diversity. When the Vikings expanded the grasslands, they connected different patches that had previously been isolated, allowing previously isolated species to germinate in new areas.

These are not the first studies to reveal a shadow of human habitation in present day ecosystems—the Amazonian rainforest is littered with evidence of agriculture before European contact, for example. But these studies show the ghosts of ecology persisting for millennia, not centuries. Not only does it bolster the notion that no landscape is pristine—an idea that has been gaining traction with the ecological community—it should underscore the persistence of any human activity.

Sources:

Dambrine, E., Dupouey, J., Laüt, L., Humbert, L., Thinon, M., Beaufils, T., & Richard, H. (2007). Present forest biodiversity patterns in France related to former Roman agriculture Ecology, 88 (6), 1430-1439 DOI: 10.1890/05-1314

PÄRTEL, M., HELM, A., REITALU, T., LIIRA, J., & ZOBEL, M. (2007). Grassland diversity related to the Late Iron Age human population density Journal of Ecology, 95 (3), 574-582 DOI: 10.1111/j.1365-2745.2007.01230.x

Photo by mharrsch.

Related posts:

Ghosts of geography

Urban forests just aren’t the same

The woods that were

Read Full Post »

Farms giving way to subdivisions in Southeastern Wisconsin

If you were a squirrel living in Southeastern Wisconsin, you’d be pleasantly surprised by the state of things. In many places, there are as many—if not more—trees than there were 200 years ago. But that rosy image doesn’t tell the entire story. Comparing the forests that cover the cities and suburbs around Milwaukee—and likely in many places around the world—is like comparing Rome before and after the fall. It’s still Rome, but it’s not quite the same as it used to be.

Southern Wisconsin is a case study of the changes that were affecting much of the country in the 20th century. Most of the forests had been cleared in the 1800s by farmers, resulting in a landscape that little resembled what came before. The woodlots that remained were small and scattered. In one famous study, only 4.8 percent of the original forests remained by 1935. Milwaukee and its surrounding cities grew steadily in the run-up to World War II, but positively boomed thereafter. They needed room to grow, and since cleared land is easy to build on, farm after farm was subdivided.

The path from forest to front yard seems clear cut. A woods is cleared to make way for farmland, which is later subdivided into lots and sold off to make way for homes. But the reality is much more complex than that. Though a neighborhood may maintain its wooded appearance, it’s original character is gone.

In Wisconsin, subdivisions are invariably preceded by farms. Farming is a tough life. There’s not much money to be made with a small family farm, and an farmer’s property often doubles as his retirement fund. To maximize the investment, he’ll usually subdivide it for housing. It usually works out well for him, because land that’s good for growing crops is also good for building houses—it’s not too steep and most of it doesn’t need to be cleared.

That’s not to say farms are entirely devoid of trees. Most contain small woodlots and extensive fencerows that separated fields of corn, wheat, and soybeans. They’re relics of bygone forests, and in many places that’s all that’s left. Though the relationship is a bit one-sided, relic trees and farms have existed side-by-side for decades.

Maintaining that landscape during subdivision isn’t difficult. Building houses around trees is easy if you don’t take a cookie cutter approach, and houses with big trees in their yards tend to sell for more. But conservation rarely happens. That’s the conclusion of one study of Southeastern Wisconsin. It looked at the fate of extant vegetation as farms gave way to subdivisions between 1937 and 1975. Though the sum total of forested land didn’t drop as much as anticipated, very little of the original vegetation that made it through the transition. By 1975, the trees that dotted subdivisions and roadsides were almost entirely new.

That study reminds us that sum totals seldom tell an entire story. The relationship between forests, farms, and yards is complex and multidirectional. Forests are often cleared for farms, but abandoned farms can return to their forested state over time—much of New England underwent this process. However, urbanization can intervene along the way, removing the little remaining vegetation and replacing it with landscaped yards. But that’s not all the forest loss development is responsible for. Though many subdivisions are carved from land cleared previously for farms, they can be indirectly responsible for the loss of even more forests. Street and yard trees can’t offset this entirely. Similar patterns are well documented in developing nations. In Brazil, for example, expanding soy production has pushed cattle ranchers to clear land further into the frontier. It’s easy to forget these same processes are at work here in the United States.

Even when subdivisions spring fully formed from forested land—skipping the intermediate farm stage—their lots are often cleared of existing vegetation. Some of my research in graduate school documented the stark changes forest edges undergo when houses move in. In old black-and-white aerial photographs, the bare earth of cleared building sites stood out in stark contrast to the dark gray of the surrounding woodlands. Straight, sharp lines separated the two. In time, the edge bled back into the yards, but it wasn’t quite the same.

Suburban development isn’t going away anytime soon, but some of the structure and function of the old woodlands they replaced can be recovered. Homeowners can plant native trees. People can lobby their cities to plant native trees as well, rather than the whatever low-maintenance tree is in fashion among city foresters this year. The result won’t be the same as an intact woodland, but at least it will be similar.

Source:

Sharpe, D., Stearns, F., Leitner, L., & Dorney, J. (1986). Fate of natural vegetation during urban development of rural landscapes in Southeastern Wisconsin Urban Ecology, 9 (3-4), 267-287 DOI: 10.1016/0304-4009(86)90004-5

Photo by sierraromeo.

Related posts:

An ecology of gardens and yards

The map that started it all

Front yards, minus the grass

Read Full Post »

Never buy a car with a salvage title. Anyone who has ever driven a car after a major accident can tell you why—it’s just not the same as before the crash. Though all the parts might be in the right place and the paint just as shiny as before, there’s invariably some new rattle, shake, or whistle that you can’t fix. The magic that is gone, and nothing will bring it back. Cars are a lot like primary tropical forests in that way.

Biodiversity thrives in undisturbed tropical forests. But once they have been selectively logged, burned, or leveled, what grows back in their place just isn’t as rich, vibrant, or diverse as the original, according to a new paper released online today in Nature. The meta-analysis—written by a number of authors including Bill Laurence and Tom Lovejoy, two deans of tropical conservation—synthesized 2,220 pairwise comparisons of primary and disturbed tropical forests from 138 different studies on four different continents to arrive at that one conclusion.

The dominant image of deforestation—at least from an American perspective—is the Amazon. Photographs and satellite images of logging and agricultural conversion show in graphic detail splintered tree stumps, smoking ashes, and herringbone tentacles of human influence. But while the authors found South American forests are greatly threatened by human disturbance, Asian forests are even more imperiled.

To compare results from numerous studies, the study’s authors the measured effect size of human disturbance on biodiversity. It’s a statistical technique which describes the magnitude of differences between populations. The effect size of land-use changes in Asia was more than twice that of second place South America and even larger still than those of Africa and Central America.

To give you an idea of the severity of Asia’s biodiversity threats, let’s review the guidelines on interpreting effect sizes. Generally, a small effect size is 0.2, medium is 0.5, and large is 0.8 and above. In the study, Central America checks in at 0.11, Africa at 0.34, and South America at 0.44. (A quick caveat before we continue: The African result may not be representative. The continent’s tropical forests are understudied because of continued conflict, and future disturbance rates could accelerate in the face of population growth.) Asia is far ahead of the rest of the pack, blowing them all away with an effect size of 0.95.

Asian tropical forests are more threatened by every type of human impact than tropical forests on other continents. Agricultural conversion is responsible for a large portion of biodiversity loss in the region, with plantations and selective logging operations following not far behind. Plantations are of particular concern because the crops they yield—primarily palm oil and exotic woods—are lucrative. Their profit potential draws interest not only from multinational corporations, but governments as well. These organizations have large amounts of capital and can convert vast tracts of primary forest into ecologically sterile plantations that practically print money.

Plantations also have the advantage—for governments and corporations, at least—of looking deceptively like natural forests to many people. Asia Pulp & Paper, a company with large plantation holdings throughout Southeast Asia, has been exploiting this confusion through a series of recent TV ads. The Indonesian government has been in on the ruse, too, suggesting that it may push for their plantations—many of which were carved from primary forests—to count as forest land under REDD schemes, or reduction of emissions through deforestation and forest degradation. That means the government would not only profit from the plantations’ crops, but also from international payments to purportedly offset or reduce carbon emissions.

If we have to use forest land at all, the best bet to preserve biodiversity seems to be selective logging. Though the practice still harms overall biodiversity, it does so less than other land uses. Still, the paper’s authors caution that selective logging’s ill effects may be masked by proximity to less disturbed primary forests, which may export species to depauperate tracts. If this is the case, then selectively logged areas may be running the ecological equivalent of a trade deficit with primary forests. Without some reciprocation, the two will eventually go bankrupt.

This new meta-analysis confirms what many ecologists have long suspected—that minimally disturbed primary forests are some of the best bastions of biodiversity. It puts another hole in the idea that agroforestry projects, plantations, and even selective logging can extract resources without adversely affecting ecosystems. Like a car that’s been in an accident, primary can never be the same as before. But unlike cars, we can’t go out and buy new ones.

Source:

Gibson, L., Lee, T., Koh, L., Brook, B., Gardner, T., Barlow, J., Peres, C., Bradshaw, C., Laurance, W., Lovejoy, T., & Sodhi, N. (2011). Primary forests are irreplaceable for sustaining tropical biodiversity Nature DOI: 10.1038/nature10425

Photo by WWF Deutschland.

Related posts:

Spare or share? Farm practices and the future of biodiversity

Coaxing more food from less land

Can we feed the world and save its forests?

Read Full Post »

Looking out from Melrose Rock

When I was packing for the move from Chicago to Cambridge, I figured the transition would be easy for two reasons, both of which are related. First, the two cities share a temperate climate. I grew up in Wisconsin and love—absolutely love—the changing seasons. For example, I’m not merely unfazed by below zero weather, I revel in it. The second reason is partially a consequence of the first—the Midwest and New England share a similar flora. Deciduous forests were the playground of my youth, where I went to escape the heat of the summer or romp through the snowy winter.

Having been a Cantabrigian for just just over two months, I can’t speak to the winters yet. But I can say something about the plants. A jaunt to Middlesex Fells over the Labor Day weekend affirmed my fondness for temperate deciduous forests. Still, I wasn’t quite at home. The Fells has a marvelous mix of deciduous oaks and evergreen pines perched on rolling hills and rocky outcrops. The whole landscape is reminiscent of the Calvin and Hobbes cartoons I devoured as a kid, but there was something missing. That something is my history with the place, or lack thereof. Research confirms it.

I wasn’t a part of the study in question—it took place almost a decade ago—but its findings confirm why I am both predisposed to liking New England’s woods and why they aren’t quite home yet. The study’s authors surveyed 328 park users in Ann Arbor, Michigan, to see whether they were attached to a particular park or just a particular setting. The study’s authors classified participants as park neighbors, visitors, volunteers, or staff, reasoning that these backgrounds would tint the lenses through which people viewed the parks.

The researchers found that neighbors who frequented a particular park were smitten by that place in particular. Perhaps the bond was formed during solitary reflective walks, or maybe weekend picnics with the family. Regardless, they liked those place in particular and didn’t find substitutes as appealing. Park volunteers and staff, however, were more inclined to treasure a park’s ecological contributions rather than sentimental ones. When shown photographs of a particular ecosystem, say a prairie, volunteers and staff were more likely to rate those shots highly regardless of their location. Volunteers and staff, who the researchers reasoned to be more ecologically knowledgeable, were also more open to restoration projects that supplanted invasive species with natives. Park neighbors and visitors tended to be happy with the landscape the way it was and generally opposed changes.

The differing perspectives of sentimental park users and ecologically principled individuals may help explain my hesitant fondness for the Massachusetts wilderness. The study seems to confirm that I straddle the line between two types of people. I have a feeling that many people are like me, especially those who recently moved. Our sentimental side aches for a favorite tree or preferred vista, but the rational ecologist in us appreciates native plant assemblages and landscapes.

People develop not just an affinity for nature, but the nature outside their window. That suggests not only that we should get outside, but also bring the outdoors closer to home, whether that be in the form of a city park or wild backyard. First-hand experiences with nature can be powerful ways to inspire people to adopt their own environmental ethic. I’m not the first to posit this theory—David Gessner does just that in his book My Green Manifesto, which I’m currently reading, as have others before him. Indeed, I can trace part of my own environmental ethic to a childhood spent in the park down the street or at the seven acres of scrubby, overgrazed woods just outside of town that my dad was rehabilitating. They are the type of landscapes I love and am fighting to preserve. Indeed, part of the reason I’m fascinated with higher density living is the potential it has to keep the wild places wild, the semi-wild places semi-wild. Calvin and Hobbes’s zany woodland adventures captured my childhood imagination because I saw in them a bit of my own al fresco self. I want future generations to have that chance, too.

Source:

Ryan, R. (2005). Exploring the Effects of Environmental Experience on Attachment to Urban Natural Areas Environment and Behavior, 37 (1), 3-42 DOI: 10.1177/0013916504264147

Photo by Paul-W.

Related posts:

Thinking about how we think about landscapes

Wilderness housing boom challenges conservation

16,422 people per square mile

Read Full Post »

Older Posts »

%d bloggers like this: